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Chapter 1

Basic Thermodynamics

1.1 First law of thermodynamics

Exercise 1.1.1. Evaluate the heat of melting of 1 mole of pure fcc-Ni at 1 bar.
Hint 1) The melting point at 1 bar is 1728.25 K. 2) Integration of Eq. 1.4 yields
Qmelting = H liquid −Hfcc because for a pure element the phases retain their prop-
erties during the whole melting process when P and T are kept constant.

Solution 1.1.1. Database: PURE
To perform the calculation at the exact melting point use two serially coupled Equi-
librium Calculator activities. In the first, set the temperature to 1728 K. In the
second, release the temperature condition and set the liquid phase as “fixed” to the
system size. The molar enthalpies of fcc and liquid are obtained in a Table Renderer
activity as 47458 and 31638 J/mol, respectively, i.e. the enthalpy of melting is 17480
J/mol.

1.2 Second law of thermodynamics

Exercise 1.2.1. Evaluate ∆ipS for the solidification of 1 mole of liquid Ni in a
system at 1720 K and 1 bar.
Hint Solidification of the liquid can be regarded as an internal process of the system.
Liquid and fcc Ni are in equilibrium at 1728.25 K. At that temperature liquid Ni
will not solidify spontaneously, dipS = 0. At 1720 K the liquid is supercooled and
could solidify spontaneously, dipS > 0. The quantity dipS could be evaluated from
Eq. 1.6 in the integrated form, ∆ipS = ∆S − ∆Q/T . Eq. 1.4 then yields for one
mole ∆ipSm = Sfccm − Sliqm −

(
Hfcc
m −H liq

m

)
/1720. The molar quantities should here

be taken from 1720 K.

Solution 1.2.1. Database: PURE
Do the equilibrium calculation at 1720 K. The status of phases (entered/dormant)
doesn’t matter as long as it is the molar quantities that are listed. The molar
entropy and enthalpy of fcc are obtained as 85.5 and 47138 J/mol, respectively. The
corresponding values for liquid are 95.6 and 64583 J/mol. This yields ∆ipSm = 0.048
J/mol·K.
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CHAPTER 1. BASIC THERMODYNAMICS

1.3 The combined law

Exercise 1.3.1. Evaluate ∆ipS for the solidification of 1 mole of liquid Ni at 1720
K and 1 bar from information on ∆G for solidification.
Hint ∆G may be obtained from a table of Gm or from a computerized database.

Solution 1.3.1. Database: PURE
The same calculation as in 1.3.1 yields Gγm = −99934 and GLm = −99851 J/mol. We
get ∆ipSm = −∆Gm/T = 0.048 J/mol·K.

1.4 Driving force and dissipation

Exercise 1.4.1. Find the driving force for the formation of solid Ni from liquid Ni
at 1720 K and 1 bar.
Hint The only quantity that changes during isobarothermal solidification of pure Ni
is the amounts of solid and liquid Ni. It may thus be convenient to express the extent
of solidification, ξ, by the amount of solid Ni, e.g. expressed as moles, Nsol. The
driving force, D, will have the same value during the whole solidification of a pure
substance and we obtain D = −∆G/∆ξ = −

(
Gsol −Gliq

)
/∆Nsol = Gliqm −Gsolm .

Solution 1.4.1. Database: PURE
In 1.4.1 we obtained Gγm = −99934 and GLm = −99851 J/mol. Thus D = 83 J/mol.

1.5 Variable Composition

Exercise 1.5.1. (Advanced) Use Eq. 1.17 to derive µA for a system composed of a
mixture of two stoichiometric A-B phases.
Hint Remember that Gibbs energy is an additive quantity. How can one then keep
NB constant when one varies NA?

Solution 1.5.1.

2



CHAPTER 1. BASIC THERMODYNAMICS

1.6 Expressing chemical potentials through
the molar Gibbs energy

Exercise 1.6.1. Use Eq. 1.17 for evaluating the chemical potentials of Ag and Cu
at equilibrium in an Ag-Cu melt of 40 mass-% Cu at 1200 K and 1 bar.
Hint When you can define the conditions for a state of equilibrium in your software
then it should be possible to make your software evaluate most properties of the state.
Find out if it can evaluate µAg and µCu as partial derivatives, i.e. as (dG/dNi)P,T,Nj

.

Solution 1.6.1. Database: TCSLD
Note that partial differentiation may only be performed with respect to quantities
that are equilibrium conditions. Therefore, first calculate the number of moles of
each component in a system of total size 1 mole and 40 mass-% Cu, which yields
0.46911 moles Ag and 0.53089 moles Cu. Then set the number of moles of each
component as equilibrium conditions instead of system size and composition. This
allows the partial derivatives ∂G/∂NCu and ∂G/∂NAg to be entered as functions
using Thermo-Calc syntax, i.e. “G.N(CU)” and “G.N(AG)”. As they should, these
functions have the same values as the chemical potentials, viz. -75337 and -61767
J/mol, respectively.

1.7 Gibbs–Duhem relation

Exercise 1.7.1. Consider the equilibrium between an A-rich phase and a stoichio-
metric A3B2 compound. Use Eq. 1.34 to illustrate how µB can be obtained from a
molar Gibbs energy diagram.
Hint Remember that the molar Gibbs energy of all phases is expressed per mole of
atoms in the molar Gibbs energy diagram, not per formula unit.

Solution 1.7.1. We have GA3B2
m = xA3B2

A µA + xA3B2

B µB
where xA3B2

A = 3/5 and xA3B2

B = 2/5
so µB = 5/2GA3B2

m − 3/2µA

3



CHAPTER 1. BASIC THERMODYNAMICS

Exercise 1.7.2. The chemical potentials of A and B in an A-B solution phase can
be changed by adding some B or by exchanging some A for the same amount of B.
Check the validity of the Gibbs–Duhem relation at constant P and T for these two
cases numerically on a solid Ag-Cu alloy with 5 atom-% Cu at 1 bar and 1100 K.
Hint For these two cases the Gibbs-Duhem relation yields

NCu (∂µCu/∂NCu)NAg,P,T
+NAg (∂µAg/∂NCu)NAg,P,T

= 0

NCu (∂µCu/∂NCu)N,P,T +NAg (∂µAg/∂NCu)N,P,T = 0

An advanced thermodynamic program can give all these derivatives directly. If that
is not available to you, consider 1 mole of the alloy, first evaluate the chemical
potentials directly, then add a small amount of Cu, e.g. 0.01 mole, and evaluate the
new chemical potentials, and apply Eq. 1.37 to the differences obtained and, finally,
do the same after also removing the same amount of A.

Solution 1.7.2. Database: TCSLD
First, set conditions for P , T , NCu and NAg. Set, for example NCu = 0.05 and NAg =
0.95. Enter the functions ∂µCu/∂NCu and ∂µAg/∂NCu as “MUR(CU).N(CU)” and
“MUR(AG).N(CU)”, respectively.
We obtain ∂µCu/∂NCu = 1.47237 · 105 and ∂µAg/∂NCu = −7749.3
Then exchange the condition for NAg for a condition on the system size, for example
N = 1.
We then obtain ∂µCu/∂NCu = 1.54986·105 and ∂µAg/∂NCu = −8157.2 By incerting
the values into the equations above we obtain:

NCu (∂µCu/∂NCu)NAg,P,T
+NAg (∂µAg/∂NCu)NAg,P,T

=

0.05 · 1.47237 · 105 + 0.95 · (−7749.3) = −1 · 10−11

NCu (∂µCu/∂NCu)N,P,T +NAg (∂µAg/∂NCu)N,P,T =

0.05 · 1.54986e5 + 0.95 · −8157.2 = 4.5 + ·10−12

Since the resulting values are virtually zero, the relationship holds.

4



CHAPTER 1. BASIC THERMODYNAMICS

Exercise 1.7.3. It is common to express the chemical potential of oxygen in a gas
through the partial pressure of the O2 molecules. Of course, the value of this quantity
is directly related to the chemical potential of O2. Show that it is also related to
the chemical potential of O. The result may seem absurd if there are no O atoms
present. Some condition must be fulfilled. Which one?
Hint Apply Eq. 1.27.

Solution 1.7.3. Database: SSUB
Perform a calculation with hydrogen and oxygen at 1000 K and 1 bar. Set the mole
fraction of oxygen to 0.5. Set the reference state of both elements to GAS at the
current temperature and pressure of 1 bar (this is done under the components tab of
the System definer activity). The chemical potential of oxygen is -4567 J/mol. The
partial pressure of O2 is 0.33333 (list the constitution of the gas).
The chemical potential of an element k is commonly written as

µk = ◦µk +RT ln ak

However, the chemical potential listed by Thermo-Calc is actually

µ′k = (µk − ◦µk) = RT ln ak

For the present case we obtain

µ′O2
= RT ln aO2

= RT ln pO2

and

µ′O =
1

2
µ′O2

=
1

2
· 8.314 · 1000 · ln 0.3333 = −4567

This is based on eq. 1.27 which can only be applied for a real or assumed equilibrium.

1.8 Phases

Exercise 1.8.1. Find the total Gibbs energy of a system containing 0.5 kg of Al2O3

and 1 kg of CaO at 1 bar and 1500 K. Suppose the two substances have not reacted
with each other. Check the law of additivity.
Hint The system is not really in internal equilibrium since the two oxides have a
tendency to react with each other. To avoid that they react with each other, you
could simply omit all other phases from the set of data fetched from the database.
To check the law of additivity, evaluate the total G and G of the Al2O3 phase and
G of the CaO phase separately and add them.

Solution 1.8.1. Database: TCOX
First calculate the Gibbs energy of 0.5 kg SiO2. Select only the QUARTZ phase. It
can be convenient to set the site fraction of the SiO2 species to one as an equilibrium
condition. GQUARTZ = −8.71326 · 106

Then calculate the Gibbs energy of 1 kg CaO. Select only the HALITE phase.
GHALITE = −1.34116 · 107

Finally calculate the Gibbs energy of the joint system. The number of moles of Ca,
Si and O can be obtained from the previous two calculations. GHALITE+QUARTZ =
−2.06027 · 107

5



CHAPTER 1. BASIC THERMODYNAMICS

1.9 Gibbs phase rule

Exercise 1.9.1. Sometimes one plots the phase diagram for a system with different
sets of axes in order to illustrate different aspects. Fig. 1.5 shows the Ag-Cu phase
diagram at a pressure of 1 bar, plotted in two ways. Locate the fcc+L phase field in
both diagrams and try to apply the Gibbs phase rule. Explain the results.
Hint In this system there are two fcc phases. Choose one of them. Remember under
what conditions the rule was derived.

Solution 1.9.1. According to Gibbs phase rule the variance is given by v = c+2−p =
2 + 2− 2 = 2 for two-phase equilibria in a binary system. In these plots the pressure
is fixed to 1 bar, which reduces the variance by one i.e. v = 1. A variance of one
corresponds to a line, as can be observed in the left hand figure. In the right hand
figure however we have two-phase equilibria that are two dimensional which would
correspond to a variance of two i.e. be in disagreement with Gibbs phase rule. Gibbs
phase rule is only valid for potentials and therefor does not apply to the right hand
figure.

Exercise 1.9.2. Eq. 1.16 has some terms with a potential as variable and some with
an extensive quantity. Which one is intensive and which one is extensive in the term
Ddξ?
Hint You may for instance consider the solidification of a pure metal as the internal
process.

Solution 1.9.2. If we consider the solidification of pure metal, then the extent of
the process, ξ, is the number of moles of solid metal, which is an extensive property.

1.10 Introduction of new components

Exercise 1.10.1. For the Ca-O-Si system it may be natural to use the three elements
as components. However, suppose you are only interested in the reactions between
the two primary oxides, CaO and SiO2, and you like to compute the CaO-SiO2 phase
diagram, which is really a quasibinary section of the ternary one. Should you expect
any problem? If so, try to solve it.
Hint A thermodynamic program normally treats the elements as components and
for a ternary system they are three. In the present case it may seem natural to
define CaO and SiO2 as the components but the program may still require a third
component. You have to introduce a third component that is not situated on the
CaO-SiO2 line. It may seem most logical to select O as the third component. To
avoid that other phases in the CaO-O-SiO2 system appear in the calculation it may
be convenient to use a very low O activity, e.g. 1 · 10−10.

Solution 1.10.1. Database: TCOX
Set CA1O1, SIO2 and O as components. Set the reference state of O as GAS at
ambient temperature. Remove the phases fcc, bcc, hcp, diamond, cbcc and cub and
set the gas phase dormant. Set N=1, P=1e5, ACR(O)=1e-10, T and x(SIO2) as
conditions. Let T and x(SIO2) be axis variables.

6



CHAPTER 1. BASIC THERMODYNAMICS

1.11 Gibbs energy of formation

Exercise 1.11.1. Evaluate the standard Gibbs energy of formation of Cr23C6 at 1
bar and 1000 K from your data bank system.
Hint Find the Gibbs energy for 1 mole of formula units of Cr23C6. Start by changing
the references of Cr and C to bcc-Cr and graphite at 1 bar and 1000 K.

Solution 1.11.1. Database: TCFE
Set the reference states of Cr and C to BCC and GRAPHITE at ambient temperature
and 1 bar pressure, respectively. Separate calculations of the Gibbs energy of 1
mole each of bcc-Cr, graphite and Cr23C6 yields -36694, -12659 and -1315648 [J].
The standard Gibbs energy of formation of Cr23C6 at 1000 K and 1 bar is then
−1315648 + 23 · 36694 + 6 · 12659 = −395723 [J/mol formula unit]. So Cr23C6 may
form spontaneously.
Alternatively, a calculation can be made where bcc and graphite are entered and
where the status of Cr23C6 is set to dormant. The driving force D for Cr23C6 is then
equal to 1.6409. We have that 1.6409 · 29 ·R · T = 395656, which is almost the same
absolute value, but not exactly the same since the bcc is not pure bcc-Cr.

1.12 Properties of the Gibbs energy function

Exercise 1.12.1. Evaluate the enthalpy of pure Mo at 2000 K relative 25◦C and 1
bar.
Hint You may not need to use Eq. 1.50 because most kinds of thermodynamic soft-
ware have special procedures for the evaluation of the properties based on the first
derivatives of G.

Solution 1.12.1. Database: PURE
Since the reference state is by default 25 ◦C the correct answer is obtained by simply
making an equilibrium calculation at 2000 K and checking the molar enthalpy (50445
J/mol).

Exercise 1.12.2. Evaluate the thermal expansion of an alloy of Fe with 0.5 mass-%
C at 1300 K and 1 bar from stored information on G for the fcc phase, which is the
stable phase under those conditions.
Hint Again you need the kind of software that can evaluate partial derivatives.

Solution 1.12.2. Database: TCFE For partial derivatives a dot, “.”, syntax is used,
for example “V.T” for ∂V

∂T . Enter a function “V.T/V”, compute the equilibrium and
list the value of the function (6.4 · 10−5 K−1).

7



CHAPTER 1. BASIC THERMODYNAMICS

1.13 Adiabatic changes

Exercise 1.13.1. Consider a shock wave traveling through a plate of iron, which
initially is at 20◦C. Evaluate dT/dP .
Hint A shock wave is very fast and there is very little time for heat conduction. It
may happen that there is time for some dislocation movements and the wave may
leave the material slightly deformed. Neglecting such effects one can approximate the
compression and the release of pressure on the back side of the wave as isentropic.
One could then obtain dT/dP when the wave is approaching as (∂T/∂P )S . It is
directly obtainable from an advanced data bank system for thermodynamics. If such
a system is not available one must express the partial derivative in terms of the
properties available in tables, i.e. CP , α and κT , which are second derivatives of
G with respect to P and T . In that case you should thus transform (∂T/∂P )S to
derivatives where P and T are the variables. Since S is also involved you should
consider a function S (T, P ).

dS =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP

For dS = 0

0 =

(
∂S

∂T

)
P

(
∂T

∂P

)
S

+

(
∂S

∂P

)
T

and using Eqs. 1.51 and 1.53(
∂T

∂P

)
S

= −
(
∂S

∂P

)
T

/(
∂S

∂T

)
P

= −
(
−∂2G
∂P∂T

)/(
−∂2G
∂T 2

)
=

V α

CP /T

It should be emphasized that V , α and CP vary with P and T and detailed infor-
mation is required in order to integrate this result to higher pressures. That can be
obtained from a database but integration is still laborious. Much can be gained by
using an advanced data bank system.

Solution 1.13.1. Database: TCFE
First make an equilibrium calculation at 293 K to evaluate the entropy. Then replace
the temperature equilibrium condition with an entropy condition and compute the
equilibrium again. Enter a function “T.P” and evaluate it (3 · 10−9 K/Pa).

1.15 Duhem’s theorem

Exercise 1.15.1. Using a thermodynamic data bank system, determine the state of
equilibrium of an alloy with 20 mole-% Cu in Ag at 800◦C and 1 bar.
Hint The size is not prescribed and you can choose any size, e.g. N = 1. With that
choice NCu = 0.2 and NAg = 0.8. Or you could enter the condition as N = 1 and
xCu = 0.2 or even NCu = 0.2 and xAg = 0.8.

Solution 1.15.1. Database: TCSLD
A simple calculation yields the stable phases, fcc and liquid.

8



CHAPTER 1. BASIC THERMODYNAMICS

Exercise 1.15.2. From the previous exercise you know that there will be two phases,
fcc and liquid (L). You will also know the amounts and compositions of the phases.
Omit the condition on the value of the temperature and accept the value of the Cu
content in L as a new condition for an attempt to determine the temperature.
Hint Of course, you should expect to recreate the same state of equilibrium, i.e. to
find T = 1073 K.

Solution 1.15.2. Database: TCSLD
Of course, the same equilibrium state is obtained.

1.16 Characteristic state function and
Gibbs energy model

Exercise 1.16.1. For the Ag-Cu system, try to use the condition that fcc and L
must be present in an equilibrium at 800◦C and 1 bar.
Hint A way to define that both phases are present would be to require a certain
amount of each one, e.g. 1 mole. According to Duhem’s theorem it then remains to
define 2 + c− 2 = c = 2 conditions, which should be the values of P and T .

Solution 1.16.1. Database: TCSLD
There are many ways to do this. For example by setting the status of the liquid and
fcc phases as “fixed”. Alternatively, the number of moles of each phase can be used
directly as equilibrium conditions.

9
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Chapter 2

Solution Models

2.1 Constitution and constituents

Exercise 2.1.1. The mole fractions of the components in a phase can be evaluated
from the site fractions if one considers the stoichiometric coefficients. Evaluate the
mole fraction of component B in the phase (A,B)1 (B,C,D)2 if y′B = 0.2 and y′′B =
0.05.
Hint Apply the definition xB = NB/

∑
Ni to one formula unit.

Solution 2.1.1. For a phase with the constitution (A,B)1(B,C,D)2, evaluate the
mole fraction of B if the site fraction of B on the first sublattice is 0.2 and 0.05 on
the second sublattice.

xB =
1y′B + 2y′′B

1 + 2
=

0.2 + 0.1

3
= 0.1

Exercise 2.1.2. Give the formula showing the constitution of an A1B2 phase if one
has been able to decrease the mole fraction of B to 0.5 by some A atoms entering as
a second constituent of the second sublattice.
Hint Express the formula in a general way as A1 (A1−zBz)2 and apply xB =
NB/

∑
Ni.

Solution 2.1.2. Write the constitution as A1(A,B)2

xB =
2y′′B
1 + 2

= 0.5

y′′B = 0.75

Thus, A1(A0.25,B0.75)2

11



CHAPTER 2. SOLUTION MODELS

2.2 Ideal solutions and related non-ideal solutions

Exercise 2.2.1. In the regular solution model of a binary A-B system one assumes
that EGm = xAxBLAB . Evaluate the partial excess Gibbs energy of component B.
Hint You can apply Eq. 1.32 directly by neglecting the other terms in Gm or Eq. 1.33
by identifying Am with EGm.

Solution 2.2.1.

EGm = xAxBLAB

EGB = EGm +
∂EGm
∂xB

− xA
∂EGm
∂xA

− xB
∂EGm
∂xB

EGB = xAxBLAB + xALAB − xAxBLAB − xAxBLAB = xA(1− xB)LAB = x2ALAB

2.3 Chemical activity and activity coefficient

Exercise 2.3.1. One has studied solutions of Mn in fcc Fe-Ni and bcc Fe-Cr alloys
at 1200 K and has expressed the Mn activity using pure fcc-Mn and pure bcc-Mn,
respectively, as references. For both alloys, Fe-Mn-Ni and Fe-Mn-Cr, one obtained
aMn = 0.03. What alloy had the highest activity?
Hint To answer this question you must use a common reference and you may use any
state as the common reference, say fcc-Mn. With a data bank system you can simply
ask for the activity relative fcc-Mn instead of bcc-Mn as long as you have kept data
for the fcc phase. Of course, you could just as well solve the problem analytically by

changing to the fcc reference using afcc−refMn = abcc−refMn ·exp
[(
◦GbccMn − ◦G

fcc
Mn

)
/RT

]
but then you must first evaluate the difference for Mn in the two states at 1200 K.

Solution 2.3.1. Database: TCFE
For the unary system Mn, compute the equilibrium at 1200 K and 1 bar for 1 mole
and list the Gibbs energy of the system for the cases i) only fcc entered and ii)
only bcc entered. These values (-62363 and -62129 [J/mol]) are of course the Gibbs
energies of pure fcc-Mn and bcc-Mn. Evaluating the activity of Mn in the Fe-Cr-Mn
alloy with fcc as reference we obtain

afccMn = abccMn · exp

(
◦GbccMn − ◦G

fcc
Mn

RT

)
= 0.0307

The activity is highest in the Fe-Cr-Mn alloy.
Note: The chemical potential given by Thermo-Calc for a species k (MU(k) or
MUR(k)) is

µ′k = µk − ◦µREFk = RT ln ak

12



CHAPTER 2. SOLUTION MODELS

2.4 Excess Gibbs energy

Exercise 2.4.1. An A-B solution phase can be approximated as a regular solution
with LAB = 20 kJ/mol at 800◦C. Evaluate the activity coefficient for B at xB = 0.40.
Hint You must solve this exercise analytically if you cannot create your own database.
Having evaluated the activity coefficient, fB , you should also evaluate aB .

Solution 2.4.1. We have
RT ln fB = LABx

2
A

Thus

fB = exp

(
LABx

2
A

RT

)
= 2.24

and
aB = fBxB = 0.8964

13
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2.5 Dilute solutions

Exercise 2.5.1. The experimental information on many terminal solutions is very
limited and often one only gives an ideal solution description based on the Gibbs
energy of the solute element in a hypothetical state with the same structure as the
solvent. On the other hand, there are methods to estimate that energy relative to the
stable state of the solute element in pure form. Study the description of the solution
of Si in fcc-Al in your data bank.

1. Plot the activity of Si in the fcc solution (suspend all other phases) at 500◦C
all the way to pure Si using fcc-Si as reference.

2. Change the reference state to the stable state of Si at the current T and plot
the diagram again.

3. From the activity of pure Si obtained from the first diagram compared to the
second one, you may calculate the difference in Gibbs energy between the two
reference states.

Hint

2. To find the stable state of Si you may for instance calculate the binary phase
diagram.

3. Applying the definition of the chemical potential for the two cases you get

µSi = ◦G
(1)
Si +RT ln a

(1)
Si = ◦G

(2)
Si +RT ln a

(2)
Si .

Solution 2.5.1. The left image shows the activity of Si in fcc-Al relative fcc and in
the right image the reference for Si is diamond.

For the difference in Gibbs energy of the two reference states we have

◦GdiamondSi − ◦GfccSi = RT ln
afccSi

adiamondSi

= −34000

14
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2.6 Phases with sublattices

Exercise 2.6.1. Suppose a = b = 1 and ◦GAC = 10, ◦GAD = 8, ◦GBC = 2,
◦GBD = 20 (kJ/mol) in Eq. 2.27. Derive an equation for the line of reference along
the AD-BC diagonal using y′B as the variable.
Hint Start by expressing y′A, y′′C and y′D as functions of y′B along the diagonal.

Solution 2.6.1. for (A,B)1(C,D)1 we have

◦Gm = y′Ay
′′
C
◦GAC + y′Ay

′′
D
◦GAD + y′By

′′
C
◦GBC + y′By

′′
D
◦GBD

For AD-BC we get the following relationships between the site fractions

y′A = 1− y′B
y′′C = y′B

y′′D = 1− y′B

Inserting these relationships gives

◦GAD−BCm = (1− y′B)y′B
◦GAC + (1− y′B)2 ◦GAD + (y′B)2 ◦GBC + (1− y′B)y′B

◦GBD

= 10(y′B − (y′B)2) + 8(1− 2y′B + (y′B)2) + 2(y′B)2 + 20(y′B − (y′B)2)

= 8 + 14y′B − 20(y′B)2 [kJ/mol]

15
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2.7 Interstitial solutions

Exercise 2.7.1. The interstitial solution of C in fcc-Fe can be represented by the
formula Fe1 (V a,C)1. Using a database compute and plot µC and aC as functions
of the C content at 1200 K and 1 bar from 0 to 1.5 mass-% C, using graphite as
reference. Use the mole fraction of C, not y′′C .
Hint Of course, the computer can directly evaluate xC and plot the diagram.

Solution 2.7.1. Database: TCFE
The left image shows aC vs mass-% C and the right µC vs mass-% C

2.8 The ideal gas model

Exercise 2.8.1. What is the partial pressure of monatomic H in a hydrogen gas
when in internal equilibrium at 1 bar and 2000 K?

Solution 2.8.1. Database: SSUB
Since, pH = yH , this can be obtained directly after computing the equilibrium by
listing the site fractions/constitution of the gas phase (=1.6 · 10−3).

Exercise 2.8.2. Evaluate µO −HSER
O and µO − 0.5◦GO2

(T ) for air with 20% O2

at 1 bar and 1000 K.

Solution 2.8.2. Database: SSUB
Read only oxygen from the database and set the pressure to 0.2 bar. Set the reference
state of oxygen to GAS at current T and 1 bar pressure. Both quantities are given by
the chemical potential as listed by Thermo-Calc. The former with the default SER
reference (=-117074 J/mol) and the latter with the user defined reference (=-6691
J/mol).

16
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Exercise 2.8.3. Find the value of the standard Gibbs energy of formation of
monatomic O from O2 at 1000 K.

Solution 2.8.3. Database: SSUB
Try the TABULATION module in the Console Mode version of Thermo-Calc:
Note: In the Tabulation module it is sometimes necessary to use upper case letters.
SYS: GO TAB
TAB: SWITCH SSUB
TAB: TABULATE-REACTION
Reaction: 0.5O2=O;
Pressure /100000/: 100000
Low temperature limit /298.15/: 1000
High temperature limit /2000/: 1000
Step in temperature /100/: 100
Output file /SCREEN/: SCREEN
Giving the result: 1.87685 · 105

2.9 Vapour pressure

Exercise 2.9.1. Find the partial pressures of Fe1 and Fe2, respectively, in equilib-
rium with solid fcc-Fe and bcc-Fe, respectively, at 1750 K. Suppose the solid phase
is under a pressure of 1 bar caused by an inert atmosphere. From the results, decide
whether bcc or fcc Fe is most stable.

Solution 2.9.1. Database: SSUB and TCFE
Read the gas phase from SSUB and the solid phases from TCFE.
Do equilibrium calculations with one of the solid phases at a time. The partial
pressures are obtained from “AC(FE,GAS)” and “AC(FE2,GAS)”, respectively. The
partial pressures are slightly higher over fcc-Fe, which therefore is less stable than
bcc-Fe.

2.10 Thermal vacancies

Exercise 2.10.1. Suppose the fraction of vacancies in a pure solid metal is 1 · 10−3

at the melting point. What should be the fraction at half the melting point?
Hint Of course, half the melting point means half of the absolute melting tempera-
ture.

Solution 2.10.1.

Equation 2.57: yeqV a = exp

(
−◦GV a
RT

)
yeqV a(Tm) = 0.001

ln yeqV a(Tm) =
−◦GV a
RTm

= −6.91

yeqV a

(
Tm
2

)
= exp

(
2 · −

◦GV a
RTm

)
= exp(−6.91 · 2) = 10−6

17
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Exercise 2.10.2. Suppose a specimen of pure solid A is equilibrated at the melting
point and then quenched to half that temperature. What is the driving force for
decreasing the vacancy content at the new temperature? Use the value of ◦GV a
obtained from the preceding exercise.

Solution 2.10.2. We know that:

D = −∆G

∆ξ

From the previous exercise we have that

◦GV a = −RTm ln yfrozenV a

Consider one mole of lattice sites

Dm = −∆Gm
∆ξ

The molar Gibbs energy change can be expressed as:

−∆Gm = −(yeqV aµ
eq
V a − y

frozen
V a µfrozenV a ) ∼= yfrozenV a µfrozenV a

= {µV a = ◦GV a +RT ln yV a}

= yfrozenV a (◦GV a +R
Tm
2

ln yfrozenV a )

= −yfrozenV a R
Tm
2

ln yfrozenV a

The internal variable in this case would be the change in fraction of vacancies

∆ξ = ∆yV a ∼= yfrozenV a

The driving force then becomes

Dm = −∆Gm
∆ξ

= −RTm
2

ln yfrozenV a
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2.11 Solutions with associates

Exercise 2.11.1. Analytical expressions for equilibrium constants are usually given
through Eq. 2.69 with ∆◦GAB = α + βT but more exact descriptions could easily
be used in computerized databases. Use such a database to check the temperature
dependence of ∆◦fGH2O. Make the examination from 0 to 1000◦C.
Hint Plot ∆◦GH2O as function of T using the standard states of H2 and O2 as
references.

Solution 2.11.1. Database: SSUB
The Gibbs energy of formation, ∆◦fGH2O, can be calculated by setting the standard
states of O and H to GAS and calculating the Gibbs energy for one formula unit, i.e.
1 mol O and 2 moles H.
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