
CT Chapter 1
Basic Thermodynamics



1.1 First law of thermodynamics
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States that energy can be neither created nor 
destroyed 

Concerns changes in the internal energy – not the 
absolute value

If the system receives an amount of heat dQ and if an 
amount of work dW is performed on the system, then 
the internal energy has increased by dQ+dW i.e. 
dU=dQ+dW

We consider only pressure-volume work, i.e. dW=-PdV

PdVdQdU −=

1



1.1 First law of thermodynamics
dU = dQ - PdV

Under constant volume (i.e. dV=0 ): dQ = dU

Under constant pressure (rewrite):  

i.e. dQ=dH

where we have introduced enthalpy, H=U+PV 

In thermodynamics we cannot distinguish between 
heat and work
- they are just different ways to transfer energy

VdPPVddUVdPVdPPdVdUdQ −+=−++= )(
PdVdUdQ +=

dHVdPPVUddQ =−+= )(
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1.2 Second law of thermodynamics
Introduces the quantity entropy, S. It requires that a 
process or reaction occurring spontaneously inside a 
system must increase S of the system if there is no 
heat exchange with the surroundings.

for spontaneous internal processes

An internal process will be infinitely slow at 
and may be regarded as a reversible process

A heat exchange itself will change the entropy by 

Total change of S:

0>Sdip

T
dQSd

T
dQdS ip >+=

TdQ /

0=Sdip
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Heat only goes spontaneously from high to low temperature

Entropy produced!
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1.2 Second law of thermodynamics
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PdVdQdU −=1st law

2nd law rewritten

Combined law

Rewrite

Introduce

since dipS always
positive

SdTVdPSTPVUdTdSPdVdUSTdip +−−+=−+=− )(

SdTVdPSTdSdTVdPdG ip −<−−=

TSPVUG −+=

Rewrite

STdPdVdUTdS ip++=

STddQTdS ip+=

At constant P and T: 0<−= STddG ip

or 0>=− STddG ip

1.3 Combined law
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Equilibrium condition

),,(
0)/( ,

ξ

ξ

TPGG
G TP

=

=∂∂

The slope, the rate of
decrease of G may be regarded
as the driving force, D.

ξξ dSTdGD ipPT /)/( , =∂∂−=

Identify D with TdipS/dξ i.e.
TdipS=Ddξ in previous eqs.

ξDdSdTVdPdG −−=

ξeq0 ξ

G

ξeq0 ξ

G

1.4 Driving force and dissipation

FIG.1.1.

(ξ is the extent of 
the internal process)
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Equilibrium condition

ξξ dSTdGD ipPT /)/( , =∂∂−=

For a phase transformation between two states,
α −> β, one obtains by integration 

where 

1.4 Driving force and dissipation

mGD ∆−= αβ
mmm GGG −=∆
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What is an internal process?

Everything that happens spontaneously inside a 
system as the system approaches equilibrium,
i.e. processes that are not ”directly controllable”.

Example: solidification of a supercooled liquid.

Internal process

1.4 Driving force and dissipation
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1.4 Driving force and dissipation

Imagine for instance isothermal solidification of a 
pure supercooled liquid metal. The only thing that 
changes during the process is the amounts of solid 
and liquid metal. Let ξ denote the number of moles
of solid metal, n(solid).

Internal process – Example 1

External variable = can be directly controlled during an experiment
Internal variable = property of the system that adjusts as equilibrium 
is approached and cannot be directly controlled from the outside
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The combined law:  
During the solidification P and T are constant
and we get D = -dG/dξ = -∆G/∆ξ = -∆G/∆Nsol

The process:
liquid  solid ∆G = Gsol-Gliq

and the driving force:
D = (Gliq-Gsol)/∆Nsol = Gm

liq - Gm
sol

ξDdSdTVdPdG −−=

1.4 Driving force and dissipation
Internal process – Example 1

Computerized Thermodynamics for Materials Scientists and Engineers
Hillert and Selleby, 201810



1.4 Driving force and dissipation

Here an example where
Gm for solid and liquid
Ni have been calculated.

Solidification: liq  fcc

i.e. positive below Tm

and negative above

The lines cross at the
melting temperature.
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Internal process – Example 1
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1.4 Driving force and dissipation
Internal process – Example 1

Here same calculation but
with D on the y-axis.
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1.4 Driving force and dissipation

T, V1 and V2 are fixed.
Suppose we blow in nA moles of component A, what are 
then the equilibrium content of nA

’ and nA
’’ ? 

External variables are T, V1, V2 and nA and the
internal variables are nA

’ and nA
’’.

Internal process – Example 2

A

V1 V2

nA
’ nA

’’
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The internal variable nA’ and nA’’ are not independent:
nA = nA’ + nA’’
We introduce: ξ = nA’ and get nA’’ = nA - ξ
At equilibrium: P’ = P’’

The gas law, PV = nRT, gives

P’ = ξRT/V1 = P’’=(nA-ξ)RT/V2

ξ/V1 = (nA-ξ)/V2  ξ = nA/(1+V2/V1)

1.4 Driving force and dissipation
Internal process – Example 2
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An internal process occurring under D=0 would not 
produce any entropy or dissipate any Gibbs energy 
and it would be infinitely slow (sometimes called a 
reversible process – does not exist)
For a frozen-in process dξ = 0

In both cases:

ξDdSdTVdPdG −−=

SdTVdPdG −=

1.4 Driving force and dissipation
Reversible process and frozen process
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1.5 Variable composition

Consider systems where also the content may 
change by exchange of matter with the 
surroundings, then the combined law becomes:

If no internal entropy production, we get

and if P, T and Nj are constant 

ξµ DddNSdTVdPdG ii −∑+−=

ξ,,)/(
iNTPGV ∂∂=

ξµ ,,,)/(
jNTPkk NG ∂∂=

ξ,,)/(
iNPTGS ∂∂−=

iNTPGD ,,)/( ξ∂∂−=

iidNSdTVdPdG µ∑+−=

jNTPkk NG ,,)/( ∂∂=µ
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1.5 Variable composition

µk is the partial Gibbs energy of component k

P, T, µk, V, S, Ni are all external variables

P, T, µk are also potentials as they must have 
uniform values in the whole system at equilibrium

Specifically, µk is the chemical potential of k

External variables and potentials
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1.5 Variable composition

Using                                  we can get 

Consider a large amount of homogenous matter 
with uniform P, T and composition and let the 
system be a very small volume of it. Extend its 
limits gradually i.e. integrate

the molar Gibbs energy is defined as

Chemical potential

NNNNx kikk // =Σ≡
ξµ DddNxSdTVdPdG ii −Σ+−= )(

iiii NNxG µµ Σ=Σ= )(

iim xNGG µΣ=≡ /
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Definition:

Binary case:

B

m
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1.5 Variable Composition
Definition of chemical potential illustrated

jNTPkk NG ,,)/( ∂∂=µ

ANTPBB NG ,,)/( ∂∂=µ

FIG.1.2.
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1.6 Expressing chemical potentials 
through the molar Gibbs energy

We may derive the following equation for the slope of 
the tangent in Fig.1.2:
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Binary system
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1.6 Expressing chemical potentials 
through the molar Gibbs energy

Chemical potential of B

may also be regarded as the partial molar Gibbs 
energy of component B.
Generally we can express any partial molar quantity:

e.g. if A is exchanged with H we get the partial enthalpy 
of component k usually called heat of solution of 
component k

Multicomponent system
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1.6 Expressing chemical potentials 
through the molar Gibbs energy

Enthalpy versus mole fraction Pt in an Fe-Pt fcc solution 
at 700 K

Heat of solution – Example 1

Reference phase for both 
components is fcc.
Enthalpy of solution may be 
calculated as

or Pt

m
FemPt dx

dHxHH +=

FeNTPPt
Pt N

HH
,,









∂
∂

=
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Two phase equilibrium – common tangent 
construction
Phases at equilibrium must have the same values for 
T, P and all chemical potentials.
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1.6 Expressing chemical potentials 
through the molar Gibbs energy

FIG.1.3.
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Stoichiometric phase, ϕ
Here the tangents can be drawn arbitrarily i.e. the
chemical potentials are not define for such a phase
alone.
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1.6 Expressing chemical potentials 
through the molar Gibbs energy

FIG.1.4.
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1.7 Gibbs-Duhem relation

Different possiblities (pairs) for the chemical potentials 
in Fig. 1.4. Can express the molar Gibbs energy of ϕ
using any pairs and the relation 

and since the xi:s and Gm are constants we get

Can be proven that it holds also for solution phases
with small compositional variations. The general form is

ϕϕϕϕϕϕϕ µµµ BBAAiim xxxG +=Σ=

0=+= ϕϕϕϕϕ µµ BBAAm dxdxdG

0=+−∑ dTSdPVdx mmii µ
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1.8 Phases

Phases
• are often denoted by a Greek letter e.g. α, β, γ.
• are identified by their structure (not composition)
• may be

• stoichiometric i.e. fixed composition e.g. Al2O3, CaO
• line compounds e.g. Al2O3 – Fe2O3

• solution phases e.g. fcc, liquid

In thermodynamic databases phases usually have
generic phase names, named by their structure e.g. 
FCC_A1, BCC_A2, BCC_B2.
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A1                     B1                   L10 L12

Crystallographic data

A2                     B2                    D03 L21
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1.9 Gibbs phase rule

In Gibbs-Duhem relation

there are c+2 terms (c =# of independent components),
each term consisting of one extensive quantity and one 
potential. The two quantitites in a pair are conjugate 
variables.
In a one phase system we may vary the potentials in 
c+2-1 ways since G-D gives a relation between the 
potentials.
In a system with p phases we get the variance, v, (or 
degrees of freedom):  v  = c + 2 - p

0=+−∑ dTSdPVdx mmii µ
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1.9 Gibbs phase rule

Gibbs phase rule was derived for potentials and can 
thus only be applied to phase diagrams with potential 
axes, e.g. P vs T or T vs µi or as below, T vs activity:

Ag-Cu system at constant P.
c=2
v = c+1- p (c+1 since P const.)
p=1: v = 2 + 1 – 1 = 2 (area)
p=2: v = 2 + 1 – 2 = 1 (line)
p=3: v = 2 + 1 – 3 = 0 (point)

FIG 1.5.

Example 
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1.10 Introduction of new components

Sometimes convenient to use other components than 
the elements and at equilibrium we have

For the H-O system we might want H2O

or expressed differently

BABA ba
ba

µµµ +=

OHOH µµµ += 2
2

222
5.0 OHOH µµµ +=

Computerized Thermodynamics for Materials Scientists and Engineers
Hillert and Selleby, 201830



1.10 Introduction of new components

For the reaction                              we have, 
before equilibrium has been established, a driving 
force, D

Any new set of components may be used, but the 
number of independent components never changes.

OHO5.0H 222 →+

OHOHD
222

5.0 µµµ −+=
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1.11 Gibbs energy of formation

The change of the molar Gibbs energy when one mole 
of phase ϕ is formed from the correct amounts of A 
and B. A and B are insoluble in one another.

The driving force,               , is here positive. 

βϕαϕϕϕϕϕ µµ B
o

BA
o

AmBBAAmm GxGxGxxGG −−=−−=∆

FIG 1.6.

mGD ∆−=

Computerized Thermodynamics for Materials Scientists and Engineers
Hillert and Selleby, 201832



1.11 Gibbs energy of formation

A compound is usually give as AaBb and Gibbs energy is 
given per mole of formula units

and the change per formula unit becomes

o denotes pure component (i.e. pure element or 
stoichiometric compound)

is the standard Gibbs energy of formation
of ϕ if pure α and β have been chosen as the standard 
states for A and B, respectively, at the same P and T.

ϕϕ
mBA GbaG

ba
)( +=

DbaGbGaGG BABABAf baba
)(oooo +−=−−=∆ βαϕϕ

ϕ
baBAf Go∆

Standard Gibbs energy of formation 
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1.11 Gibbs energy of formation

When ϕ precipitates from a solution phase the 
maximum driving force is obtained with a parallel 
tangent construction

Precipitation from a solution phase 

FIG 1.7a.

ϕαοϕαοϕ µµ mBBAA GxxD −+=
ϕβαοααο µµ

baBA
o

fB
o

BA
o

A GGbGaDba ∆−−+−=+ )()()(
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1.11 Gibbs energy of formation

The driving force decreases as the process proceeds 
and will reach zero when equilibrium is reached.
The total, integrated or average driving force is the 
total change in molar Gibbs energy between the final 
state and the initial state 

Driving force for the complete process 

FIG 1.7b.
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1.12 Properties of the Gibbs energy 
function

All thermodynamic properties can be expressed through 
its Gibbs energy, e.g.

iNTPGV ,)/( ∂∂=

iNPTGS ,)/( ∂∂−=

ii NPNP TTGTGTGTSGPVUH ,, ))/1(/)/(()/( ∂∂=∂∂−=+=+≡
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1.12 Properties of the Gibbs energy 
function

Heat capacity is defined as the capability of a system to 
receive heat under a given increase of T, dQ/dT

Under constant volume: dQ = dU

Under constant pressure: dQ=dH

Heat capacity 
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1.12 Properties of the Gibbs energy 
function

We can also obtain κT and α from Gibbs energy

Such important properties can be determined 
experimentally and are stored in tables in books.

Nowadays one instead stores G(P,T,Ni) in 
thermodynamic databases and obtain all 
quantities discussed above by computer calculations.

Isothermal compressibility and thermal 
expansion 

iii NTNTNTT PGPGVPV ,,
22

, )//()/(/)/( ∂∂∂∂−=∂∂−=κ

iii NTNNP PGPTGVTV ,
2

, )//()/(/)/( ∂∂∂∂∂=∂∂=α
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1.13 Adiabatic changes

During an adiabatic process dQ = 0
During a reversible process dξ = 0

We may rearrange the second law into

and for an adiabatic reversible process we thus obtain 
dS = 0, i.e. an isentropic process.

ξDdTTdQSdTdQdS ip )/1(// +=+=
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1.14 State of reference and standard 
state

Chemical potentials of pure components are usually given as
i.e. molar Gibbs energy of pure (o) A in the same 

crystal structure as the solution (α).      is thus the 
reference state for A in the α-solution. We may call this a 
model-based reference.
Comparing the chemical potential of A in α and β one 
should remember that      is unaffected by the choice of 
reference

Model-based reference 

α
AGo

α
AGo

αµA

)()()( oooo compfGGGcompfG std
AA

std
AAA +−+=+= αααµ
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1.14 State of reference and standard 
state

Different choices e.g.

= Gibbs energy of the equilibrium state at 25 oC and 
1 atm for element k. NPT = Normal P and T

= enthalpy of the equilibrium state at 25 oC and 1 bar 
and entropy at 0 K which by agreement is set to zero, for 
the element k.
SER = Standard Element Reference

State of reference 

NPT
kG

SER
kH
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1.15 Duhem’s theorem

For a closed system, i.e. all Ni are constant, the 
equilibrium state is uniquely defined by giving P and T
(or their conjugate variables) regardless of how many 
phases are involved. We thus have to give c+2 
conditions to define the equilibrium.
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1.16 Characteristic state function and 
Gibbs energy model

The characteristic state function for fixed P, T and Ni

is Gibbs energy.

In order to use it we need to know how it varies for all 
the different phases as function of P, T, Ni and internal 
variables

Such an analytical expression is regarded as a 
thermodynamic model from which all thermodynamic 
information may be obtained.

...),,,,( 21 ξξαα
iNTPG
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