CT Chapter 1
Basic Thermodynamics




1.1 First law of thermodynamics

States that energy can be neither created nor
destroyed

Concerns changes in the internal energy — not the
absolute value

If the system receives an amount of heat dQ and if an
amount of work dW is performed on the system, then
the internal energy has increased by dQ+dW 1i.e.
dU=dQ+dwW

We consider only pressure-volume work, i.e. dW=-PdV

dU = dQ — PdV
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1.1 First law of thermodynamics

dU = dQ - PdV
Under constant volume (i.e. dv=0 ): dQ = dU

Under constant pressure (rewrite):
dQ =dU + PdV

dQ =dU + PdV +VdP —VdP = dU +d (PV)-VdP
dQ =d(U +PV)-VdP = dH
i.e. dQ=dH

where we have introduced enthalpy, H=U+PV

In thermodynamics we cannot distinguish between
heat and work

- they are just different ways to transfer energy
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1.2 Second law of thermodynamics

Introduces the quantity entropy, S. It requires that a
process or reaction occurring spontaneously inside a
system must increase S of the system if there is no
heat exchange with the surroundings.

d,,S >0 for spontaneous internal processes

An internal process will be infinitely slow at d;;S=0
and may be regarded as a reversible process

A heat exchange itself will change the entropy by dQ/T

d d
Total change of S: dS Z?Q+dip8 >?Q
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1.2 Second law of thermodynamics

AQ

v

Ty

Heat only goes spontaneously from high to low temperature

_ AQ n AQ _ A(?(Tb _Ta)
T, T T,T,

a a

AS,, = >0 whereT, >T,

Entropy produced!
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1.3 Combined law

1st law dU =dQ - PdV

2nd law rewritten TdS =dQ+Td, S

Combined law TdS =dU +PdV +Td; S

Rewrite —Td; S =dU +PdV -TdS =d(U + PV —ST)-VdP + SdT
Introduce G =U + PV —-T35

Rewrite  dG =VdP-SdT -Td, S <VdP —SdT

At constant P and T: dG =-Td, S <0

since d;,S always
or —dG=Td;;S>0 positive
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1.4 Driving force and dissipation

Equilibrium condition

(06108, =0
G=G(P,T,&) (¢ isthe extent of

the internal process)

The slope, the rate of
decrease of G may be regarded

as the driving force, D.

D =—(6G /&), » =Td,,S/d& 0 g 3

FIG.1.1.

G A

Identify D with Td;,S/d¢ i.e.
Td;,S=Dd¢ In previous egs.

dG =VdP —SdT — Dd¢&
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1.4 Driving force and dissipation

Equilibrium condition

D =—(8G/0&); p =Td,,S/d&

For a phase transformation between two states,
o —> 3, one obtains by integration

D =-AG,, where AG, =G/ -G/
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1.4 Driving force and dissipation

Internal process

What is an internal process?

Everything that happens spontaneously inside a
system as the system approaches equilibrium,
I.e. processes that are not “directly controllable”.

Example: solidification of a supercooled liquid.
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1.4 Driving force and dissipation

Internal process — Example 1

Imagine for instance isothermal solidification of a
pure supercooled liquid metal. The only thing that
changes during the process is the amounts of solid
and liquid metal. Let £ denote the number of moles

of solid metal, n(solid).

External variable = can be directly controlled during an experiment
Internal variable = property of the system that adjusts as equilibrium
IS approached and cannot be directly controlled from the outside
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1.4 Driving force and dissipation
Internal process — Example 1

The combined law: |dG =VdP —SdT — Dd¢&
During the solidification P and T are constant
and we get D = -dG/d¢& = -AG/AE = -AG/ ANs°!

The process:
liguid 2 solid AG = Gs°l-Glid

and the driving force:
D = (Gliq_Gsol)/ANsol — Gmliq - Gmsol
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1.4 Driving force and dissipation
Internal process — Example 1

Here an example where -97 chc
G,, for solid and liquid LIQUID
Ni have been calculated.

~
[
X
~—
E—

Solidification: liqg = fcc

D=G!Y-G™ -101 - /'

-102 —| The lines cross at the -

l.e. positive below Tm 103 melting temperature.
- |

and negative above 1700 1725 1750
A T

100

G
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1.4 Driving force and dissipation
Internal process — Example 1

Here same calculation but 300
with D on the y-axis. 200 —

-300 |
ﬁ 1700 1725 1750

T
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1.4 Driving force and dissipation
Internal process — Example 2

T, V, and V, are fixed.
Suppose we blow in n, moles of component A, what are
then the equilibrium content of n, and n, ?

A

External variables are T, V., V, and n, and the
internal variables are n, and n,".
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1.4 Driving force and dissipation
Internal process — Example 2

The internal variable n,” and n,” are not independent:
Ny =Ny +Ny°

We introduce: { =n, and getn,” =n, - &£

At equilibrium: P’ = P”

The gas law, PV = nRT, gives

P’ = (RT/V, = P"=(n,-&RT/V,

N, = (NN, 2 &= np/(1+V,/V))
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1.4 Driving force and dissipation
Reversible process and frozen process

dG =VdP —SdT — Dd¢&

An internal process occurring under D=0 would not
produce any entropy or dissipate any Gibbs energy
and it would be infinitely slow (sometimes called a
reversible process — does not exist)

For a frozen-in process dé =0

In both cases: dG =VdP —SdT
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1.5 Variable composition

Consider systems where also the content may
change by exchange of matter with the
surroundings, then the combined law becomes:

dG =VdP - SdT + > &,dN. — Dd¢&
V = (@G/@P)T,Nié S = —(@G/@T)P’Ni’g
Hy :(aG/aNk)P,T,Nj,é‘ D:_(aG/aé)P,T,Ni

If no internal entropy production, we get

dG =VdP - SAT + X N,

and if P, T and Nj are constant
e = (0G léNk)P,T,Nj
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1.5 Variable composition
External variables and potentials

4 1s the partial Gibbs energy of component k
P, T, ., V,S, N;are all external variables

P, T, 4 are also potentials as they must have
uniform values in the whole system at equilibrium

Specifically, g is the chemical potential of k
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1.5 Variable composition
Chemical potential

Using X =N,/2N; =N, /N we can get

dG =VdP —SdT + (X x.)dN — Dd&

Consider a large amount of homogenous matter
with uniform P, T and composition and let the
system be a very small volume of it. Extend its
limits gradually i.e. integrate

G =(Zux)N =ZuN,

the molar Gibbs energy is defined as
G,=G/N=Xux
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1.5 Variable Composition
Definition of chemical potential illustrated

Definition: |y, =(0G /8Nk)P,T,NJ_

Binary case: Ug = (aG/aNB)P,T,NA

dG 0
_ _ G
dx,
dG A dG
G, =u,=6G_—-X il G }(1—x) m
A A B
" dXB " .Gm(XB) i dXB
Ha
A A Xg B
FIG.1.2.
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1.6 Expressing chemical potentials
through the molar Gibbs energy
Binary system

We may derive the following equation for the slope of
the tangent in Fig.1.2:

G °G
Hg —Hp = m 4 B
G A(acsm —aG’“j—Gm— B(aem _aemj: " N
OXg  OX, X,  OXg oG, (1—x,) de
oG, oG, dG, " Cn(e) :
OXg  OX,  dXg X, 1-%,= X,
A A Xp B

FIG.1.2
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1.6 Expressing chemical potentials
through the molar Gibbs energy
Multicomponent system

Chemical potential of B

Gg =4 =G

may also be regarded as the partial molar Gibbs
energy of component B.
Generally we can express any partial molar quantity:

OA
A E(aNkJP,T,N ~h +—_ZX

e.g. If A is exchanged with H we get the partial enthalpy
of component k usually called heat of solution of
component Kk
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1.6 Expressing chemical potentials
through the molar Gibbs energy
Heat of solution — Example 1

Enthalpy versus mole fraction Pt in an Fe-Pt fcc solution
at 700 K

0
2
4
-6
8-

-104
124
144
-16-
18-

Reference phase for both
components is fcc.
Enthalpy of solution may be
calculated as

dH

Hp = Hp + Xe

]
2
4
6

-8
-10
124
144
164

FUNCTION HPT

o
or

. 18 B
N 10.45 S 8 H
0 02 04 06 08 1. A O 02 04 06 08 1.0 H pt — | =
MOLE_FRACTION PT MOLE_FRACTION PT 8N
Pt /P T Ng
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1.6 Expressing chemical potentials
through the molar Gibbs energy

Two phase equilibrium — common tangent
construction

Phases at equilibrium must have the same values for
T, P and all chemical potentials.

G A
[3 a
o~ a
G,
a+p o
K Gs
o+p
Hg
@ I I
A al B Bla B
XB XB
FIG.1.3.
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1.6 Expressing chemical potentials
through the molar Gibbs energy

Stoichiometric phase, @

Here the tangents can be drawn arbitrarily i.e. the
chemical potentials are not define for such a phase

alone.

Gm A n
)7
B
Ma—ou \|_ — -
MY ﬂi3
Moxg X
A Xg B
FIG.1.4.
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1.7 Gibbs-Duhem relation

Different possiblities (pairs) for the chemical potentials
INn Fig. 1.4. Can express the molar Gibbs energy of ¢
using any pairs and the relation

G =Zui X = WXy + LgXg
and since the x;:s and G, are constants we get

dG! = x5duf + xfdug =0

Can be proven that it holds also for solution phases
with small compositional variations. The general form is

2 X du =V dP+S_dT =0
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1.8 Phases

Phases
- are often denoted by a Greek letter e.g. o, 3, v.
- are identified by their structure (not composition)
 may be
« stoichiometric i.e. fixed composition e.g. Al,O;, CaO
e line compounds e.g. Al,O; — Fe,0O4
» solution phases e.g. fcc, liquid

In thermodynamic databases phases usually have
generic phase names, named by their structure e.g.
FCC _Al, BCC_A2, BCC B2.
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Crystallographic data

-
' — - 3
- 0 -

— I -

- - -
= — - ¥
- -
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1.9 Gibbs phase rule

In Gibbs-Duhem relation

2 X du =V dP+S dT =0

there are c+2 terms (¢ =# of independent components),
each term consisting of one extensive gquantity and one
potential. The two quantitites in a pair are conjugate
variables.

In a one phase system we may vary the potentials in
c+2-1 ways since G-D gives a relation between the
potentials.

In a system with p phases we get the variance, v, (or
degrees of freedom): v =c+ 2 -p
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1.9 Gibbs phase rule
Example

Gibbs phase rule was derived for potentials and can
thus only be applied to phase diagrams with potential
axes, e.g. Pvs T or T vs g or as below, T vs activity:

1200 :
Ag-Cu system at constant P.
c=2

v = c+1- p (c+1 since P const.)
p=1l:v=2+1-1= 2 (area)
p=2:v=2+1-2=1 (line)
A 0 02 0 0e 08 10 p=3:v=2+1-3 =0 (point)

Cu activity relative pure lig Cu

1000 —

I 800 -

600 —

TEMPERATURE CELSIUS

FIG 1.5.
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1.10 Introduction of new components

Sometimes convenient to use other components than
the elements and at equilibrium we have

Hap, =AU\ 78

For the H-O system we might want H,O
Mo = 21y + Ho

or expressed differently
Hy,0 = Hy, "'0-5/”02
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1.10 Introduction of new components

For the reaction H,+0.50, > H,O we have,
before equilibrium has been established, a driving

force, D
D=y, +O-5,Uoz ~Hy,o

Any new set of components may be used, but the
number of independent components never changes.
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1.11 Gibbs energy of formation

The change of the molar Gibbs energy when one mole
of phase ¢ is formed from the correct amounts of A
and B. A and B are insoluble in one another.

AG,, =Gy = Xgup —Xgtg =Gy — X3 "Gy — XgoGBﬂ
The driving force, D =-AG_ , is here positive.

m ]
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1.11 Gibbs energy of formation
Standard Gibbs energy of formation

A compound is usually give as A B, and Gibbs energy Is
given per mole of formula units

ijaBb =(a+b)G;

and the change per formula unit becomes

A °Ghy ="Gry —a°Gy —b°Gy =—(a+b)D

© denotes pure component (i.e. pure element or
stoichiometric compound)

A OGfaBb Is the standard Gibbs energy of formation
of ¢ If pure a and B have been chosen as the standard
states for A and B, respectively, at the same P and T.
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1.11 Gibbs energy of formation
Precipitation from a solution phase

When ¢ precipitates from a solution phase the
maximum driving force is obtained with a parallel
tangent construction

FIG 1.7a.

e

—y? ¢ ¢
D=xXx{uy +Xgug’ -G,

(a+b)D = a(uao °GE)+b(us”—°GL) ~ A, °GL,
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1.11 Gibbs energy of formation
Driving force for the complete process

The driving force decreases as the process proceeds
and will reach zero when equilibrium is reached.

The total, integrated or average driving force is the
total change in molar Gibbs energy between the final
state and the initial state

FIG 1.7Db.
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1.12 Properties of the Gibbs energy
function

All thermodynamic properties can be expressed through
Its Gibbs energy, e.g.

V =(8G/P),
S =—(8G/8T),

H=U+PV =G+TS=G-T(6G/aT)s, = (8(GIT)/6QT))s
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1.12 Properties of the Gibbs energy
function
Heat capacity

Heat capacity is defined as the capability of a system to
receive heat under a given increase of T, dQ/dT

Under constant volume: dQ = dU

(3]
oT )y oT ),

Under constant pressure: dQ=dH

()5
oT ), \aT ),
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1.12 Properties of the Gibbs energy
function

Isothermal compressibility and thermal
expansion
We can also obtain x; and « from Gibbs energy

Kk, =—(0V /(9|:’)T,Ni IV = _(azG /aPZ)T,Ni /(0G /aP)T,Ni

o =(V13T)p, IV = (8°G/3ToP), 1(8GIoP),

Such important properties can be determined
experimentally and are stored in tables in books.

Nowadays one instead stores G(P,T,N;) in
thermodynamic databases and obtain all
quantities discussed above by computer calculations.
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1.13 Adiabatic changes

During an adiabatic process dQ =0
During a reversible process dé =0

We may rearrange the second law into
dS=dQ/T +dipS =dQ/T +(1/T)Ddé&

and for an adiabatic reversible process we thus obtain

dS = 0, I.e. an isentropic process.
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1.14 State of reference and standard
state

Model-based reference

Chemical potentials of pure components are usually given as
°G, i.e. molar Gibbs energy of pure (°) A in the same

crystal structure as the solution (a). °G; is thus the
reference state for A in the a-solution. We may call this a
model-based reference.

Comparing the chemical potential of A in a and 3 one

should remember that 4, is unaffected by the choice of
reference

1e="G% + f (comp)="G;* +(°G4-°G}*) + f (comp)
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1.14 State of reference and standard

state
State of reference

Different choices e.g.

GkNPT: Gibbs energy of the equilibrium state at 25 °C and
1 atm for element k. NPT = Normal Pand T

HkSERz enthalpy of the equilibrium state at 25 °C and 1 bar
and entropy at O K which by agreement is set to zero, for

the element k.
SER = Standard Element Reference
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1.15 Duhem’s theorem

For a closed system, i.e. all N; are constant, the
equilibrium state is uniquely defined by giving P and T
(or their conjugate variables) regardless of how many
phases are involved. We thus have to give c+2
conditions to define the equilibrium.
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1.16 Characteristic state function and
Gibbs energy model

The characteristic state function for fixed P, T and N;
IS Gibbs energy.

In order to use it we need to know how it varies for all
the different phases as function of P, T, N; and internal
variables

G*(P,T,N{", &, 55--.)

Such an analytical expression is regarded as a
thermodynamic model from which all thermodynamic
iInformation may be obtained.
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