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2.1 Constitution and constituents

sublattices
constitution

stoichiometric coefficients

constituents (e.g. A and B on sublattice 1)

site fractions yj (yA+yB=1 and yC+yD=1)

associates (e.g. AB, A2B)

species (e.g. A, B, AB, A+2)

(A,B)a(C,D)b
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2.2 Ideal solutions and related non-ideal 
solutions
Substitutional solution = all components can 
substitute for each other 

Physical mixing of the components 
contributes to the molar entropy by
if the mixing is random (and with 
to the molar Gibbs energy).

Chemical potential is given by
which is the ideal solution model

oGi is the molar Gibbs energy of pure i in the same
solution phase at current P & T and is sometimes
called the end-members of the solution.

ii xxR ln∑−
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2.2 Ideal solutions and related non-ideal 
solutions

The molar Gibbs energy of the solution
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FIG. 2.1

Binary solution
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2.2 Ideal solutions and related non-ideal 
solutions

The plane of reference is given by 
Ternary solution

i
o

i GxΣ

FIG. 2.2
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2.2 Ideal solutions and related non-ideal 
solutions

A so-called excess term, EGm, is added to the molar 
Gibbs energy to model deviation from ideality.

EGm depends on the composition but must be zero at 
the pure elements (or end-members of the solution)

Deviation from ideal behaviour

ααααααα µ m
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ii
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partial excess Gibbs energy
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2.3 Chemical activity and activity 
coefficient

Replace xB in the ideal solution with activity, it is 
defined by its relation to chemical potential:

If oGB is chosen as pure B for the same phase then the 
solution is ideal if aB=xB

BB
o

B aRTG ln+=µ

Chemical activity
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2.3 Chemical activity and activity 
coefficient

For real solutions one may introduce an activity 
coefficient . usually varies with composition.

Comparing with the excess term we get

and
i.e. 
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2.3 Chemical activity and activity 
coefficient

Essential to use common reference for chemical
potentials. Changing from a local reference state to a
global e.g. SER we get: 

Comparing the activity of B in two different solution
phases, the reference is usually     and    . The 
common reference is usually taken as the most stable
state, say α. 
The difference             is the so called lattice stability. 

Change of reference state and lattice stability
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The simplest approach for the excess Gibbs energy 
term for a binary system is

and if L is constant the solution is called regular.

A common polynomial for the excess term is the 
Redlich-Kister polynomial

Other types of polynomials are possible but all are 
identical in the binary case.  However, they will 
differ in ternary extrapolations and therefore the most 
symmetrical is preferred

2.4 Excess Gibbs energy

ααα
BAm

E xLxG =
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The contribution to 
the excess enthalpy 
as a function of 
composition for the 
first three coefficients 
of the R-K series, all 
with the same value, 
10000 J/mol. 

2.4 Excess Gibbs energy
Redlich-Kister polynomials
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Ideal interaction in the liquid and 
the following interaction in the 
solid:
0 (top left), +10000 J/mol
(above) and -10000 J/mol (left)
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2.4 Excess Gibbs energy
Example: Effect of Excess term on the phase 
diagram
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FIG. 2.3a

FIG. 2.3c

FIG. 2.3b
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2.5 Dilute solutions

Let us consider a particular α solution that behaves as a 
regular solution and has a negative regular solution 
parameter. For high B content             and we get

0ln ++≅ ααµ BB
o

B xRTG
ααααα
BBBBB xexfxa =≅= 0

FIG. 2.5

Raoult’s law

Raoult’s law

αα
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2.5 Dilute solutions

For low B content we get

At          
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2.6 Phases with sublattices
When lattice sites are not equivalent they are divided in
different sublattices e.g.
(A,B)a(C,D)b

End-members: AaCb, AaDb, BaCb, BaDb

Surface of reference

FIG. 2.6
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2.6 Phases with sublattices
Site fractions, yi, are used to express the Gibbs energy 
for one mole of formula units

they are related to the mole fractions as

with the (A,B)a(C,D)b model as example

Ideal Compound Energy Model 
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since ideal mixing on each sublattice and no excess term
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2.6 Phases with sublattices

Chemical potential of the elements cannot be defined 
for such a phase alone. Instead the chemical potential 
of the end-member can be obtained, e.g.

where
and is called the standard Gibbs energy of reaction 
of the reciprocal reaction

One can show that

(Obvious!)
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o
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CA ybRTyaRTGyyG
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++∆+= +µ
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Chemical potential when stoichiometric 
constraint

babababa CBDADBCA +→+
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Reciprocal system and due to Gibbs-Duhem it behaves 
like a ternary!

Only three of the chemical potentials
of the four elements are independent
in a reciprocal system

where µD is regarded as reference (e.g. oxygen)

2.6 Phases with sublattices

FIG. 2.4
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If we instead have e.g. (A,B)a(A,C,D)b

i.e.
if (at least) one element can dissolve in all sublattices 
then the chemical potentials of all elements may be 
evaluated since       is equal to the chemical potential
of A with        as reference, related to      if 

is known.

2.6 Phases with sublattices
Stoichiometric constraint

AA:µ
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o G :
ref
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ref
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2.7 Interstitial solutions

Let us regard D as Va and C as interstitials:
(A,B)a(C,D)b i.e. (A,B)a(C,Va)b 

The end-members AaDb and BbDb would then be pure 
A and B!

Example: bcc (Fe,Cr)1(C,Va)3 where Fe1Va3 and Cr1Va3

would be pure bcc-Fe and bcc-Cr respectively
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2.8 The ideal gas model

For a monatomic species the ideal gas model predicts:

PJ is regarded as the partial pressure of species J but is 
actually defined as where      is the fraction of J
relative all other species in the gas and P is the total 
pressure. We may write:

JJJ PRTK ln+=µ

PyJ

JJJ yRTPRTK lnln ++=µ

Jy
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depends strongly on pressure compared 
to oGi for a condensed phase. For a gas species one 
usually defines the pure species at a P of 1 bar as the 
reference at the current T i.e. the standard state.

the partial pressure must then be expressed in 
bar. We usually omit 1 bar, T and write

and o for a gas then means that the species is in pure 
gaseous form at 1 bar and the current T.

JJ
o

J PRTG ln)Tbar,1( +=µ

PRTKJ ln+

JJ
o

J PRTG ln+=µ

2.8 The ideal gas model
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For a diatomic gas species we get:
at equilibrium we have

and we can evaluate

and also the equilibrium value of       from 

JJ µµ 2
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2.8 The ideal gas model
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For the gaseous elements, H, N and O, the diatomic 
species is much more abundant than the monatomic 
species, i.e. H2, N2 and O2, and in those cases these 
species are used as reference, i.e.           is used as 
reference for species J.

In such cases PJ2 is the partial pressure in an 
imagined atmosphere where J and J2 are in 
equilibrium.

2
5.0 J

oG

2.8 The ideal gas model
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GAS
CONSTITUENTS: O,O2,O3

G(GAS,O;0)-H298(1/2_MOLE_O2(GAS),O;0) = 
+F13634T+R*T*LN(1E-05*P)

G(GAS,O2;0)- 2 H298(1/2_MOLE_O2(GAS),O;0) = 
+F14003T+R*T*LN(1E-05*P)

G(GAS,O3;0)- 3 H298(1/2_MOLE_O2(GAS),O;0) = 
+F14300T+R*T*LN(1E-05*P)

P = 1 bar = 1E5 Pa 
LN(1E-05*P) = 0

2.8 The ideal gas model

Example – gas in database
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SYMBOL        STATUS   VALUE/FUNCTION
4 F14003T   20000000

298.15<T<  900.00:
-6960.69252-51.1831473*T-22.25862*T*LN(T)-.01023867*T**2+1.339947E-06*T**3
-76749.55*T**(-1)

900.00<T< 3700.00:
-13136.0172+24.743296*T-33.55726*T*LN(T)-.0012348985*T**2+1.66943333E-08*T
**3+539886*T**(-1)
3700.00<T< 9600.00:

+14154.6461-51.4854586*T-24.47978*T*LN(T)-.002634759*T**2+6.01544333E-08*T
**3-15120935*T**(-1)
9600.00<T<18500.00:

-314316.628+515.068037*T-87.56143*T*LN(T)+.0025787245*T**2-1.878765E-08*T*
*3+2.9052515E+08*T**(-1)
18500.00<T<20000.00:
-108797.175+288.483019*T-63.737*T*LN(T)+.0014375*T**2-9E-09*T**3+.25153895
*T**(-1)

2.8 The ideal gas model

Example – gas in database
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2.9 Vapour pressure
Even solid elements may have a vapour pressure, 
usually very small. The standard state for the gas 
would be based on the solid state at 1 bar and the 
current T.
The chemical potential of the monatomic species in 
the gas would be

where 
and similarly  
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2.10 Thermal vacancies

Thermal vacancies are the empty sites in a solid metal. 
They are called ”thermal” since they increase with T.

The system is unary and the amount of Va is thus an 
internal variable

Since the number of Va is so small we cannot 
distinguish experimentally between the two terms

1),( VaA

( )[ ] [ ]RTERTyLGy AVaAAVaVa
oeq

Va /exp/exp 2 −≅+−=
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2.11 Solutions with associates

One type of non-ideal solutions uses associates e.g. 
molecules to describe the excess term.
For A-B solutions with AB associates (in addition to 
A and B) we get per mole of constituents,

which may be regarded as an ideal solution model for a 
solution with associates.

We use here site fractions or more correct constituent 
fraction even though there is only one sublattice

iiAB
o

ABB
o

BA
o

Am yyRTGyGyGyyyG ln...),( 21 Σ+++=
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We have Cd, Te and also CdTe species (compare to 
a gas phase with molecules)

Associate Model - Example Cd-Te

CdTeTeCd

CdTeCd
Cd yyy

yyx
2++

+
=

CdTeTeCd

CdTeTe
Te yyy

yyx
2++

+
=

2.11 Solutions with associates
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We treat the yi:s as xi:s which is allowed for frozen-in 
states or at internal equilibrium:

At internal equilibrium using 
and the above eqn. we get

and

where

An example of the law of mass action and K is a temperature 
dependent coefficient, often called equilibrium constant

2.11 Solutions with associates
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Excess Gibbs energy due to associates
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