CT Chapter 2
Solution models




2.1 Constitution and constituents

sublattices
(A’ B)a(C’ D)b

constitution f /

stoichiometric coefficients

constituents (e.g. A and B on sublattice 1)
site fractions y; (ya+Yg=1 and y.+yp=1)
associates (e.g. AB, A,B)

species (e.g. A, B, AB, A*2)
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2.2 ldeal solutions and related non-ideal
solutions

Substitutional solution = all components can
substitute for each other

Physical mixing of the components

contributes to the molar entropy by —R> x. Inx.

if the mixing is random (and with —TS =+RT 2 x. Inx
to the molar Gibbs energy).

Chemical potential is given by ,="G; + RT Inx,
which is the ideal solution model

°G; Is the molar Gibbs energy of pure i in the same
solution phase at current P & T and is sometimes
called the end-members of the solution.
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2.2 ldeal solutions and related non-ideal

solutions
Binary solution

The molar Gibbs energy of the solution
G, =2Xu =2X%"G +RT 2 x Inx

OGg
RT X x Inx

T

OGX
RT Inx4* {
°GY +RT Inx8* = 1, (x3Y)

A A Xg' B

FIG. 2.1

RT Inxg*
1, (X2H)="GZ +RT Inxg*

G (X") = X3 pa + X5ty (1127 H0
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2.2 ldeal solutions and related non-ideal

solutions
Ternary solution

The plane of reference is given by Xx. °G.
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composition triangle
(Gibbs triangle)

FIG. 2.2
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2.2 ldeal solutions and related non-ideal
solutions

Deviation from ideal behaviour

A so-called excess term, EG,,,, is added to the molar
Gibbs energy to model deviation from ideality.

EG,,, depends on the composition but must be zero at
the pure elements (or end-members of the solution)

G? =2 x"u =2 x*°G* + RT x” Inx*+°G¢

1 ="G* + RT Inx* +°G*

|

partial excess Gibbs energy
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2.3 Chemical activity and activity
coefficient

Chemical activity

Replace Xz In the ideal solution with activity, it is
defined by its relation to chemical potential:

tg="Gg + RT Ina,

If °Gg Is chosen as pure B for the same phase then the
solution is ideal If ag=Xg
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2.3 Chemical activity and activity
coefficient
Activity coefficient

For real solutions one may introduce an activity
coefficient ag = fgXz. fg usually varies with composition.

Comparing with the excess term we get

ts="Gg +RT Inag =

°Gf +RT In ¢ +RT InxZ=°GZ +RT InxZ +°G?
and

RTIn f,=°G¢ "€ f_ =exp(°GZ/RT)
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2.3 Chemical activity and activity
coefficient

Change of reference state and lattice stability

Essential to use common reference for chemical
potentials. Changing from a local reference state to a
global e.g. SER we get:

Aref Grﬁ — Grﬁ _Z XiaGiref _ AG;{ n Z Xia (oGiIocaI . Giref )

Comparing the activity of B in two different solution
phases, the reference is usually °G; and OGBﬂ. The
common reference is usually taken as the most stable
state, say a.

The difference’GZ —°G/ is the so called lattice stability.
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2.4 Excess Gibbs energy

The simplest approach for the excess Gibbs energy
term for a binary system is

"G% = Lx9x¢
and if L is constant the solution is called regular.

A common polynomial for the excess term is the
Redlich-Kister polynomial

L="L + (X5 —xZ) 'L+(x§ —xZ)* °L..

Other types of polynomials are possible but all are
Identical in the binary case. However, they will

differ in ternary extrapolations and therefore the most
symmetrical is preferred
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2.4 Excess Gibbs energy

FiEE Redlich-Kister polynomials

The contribution to 3000 . . . .
the excess enthalpy N Lo i
as a function of
composition for the c0ve - -
first three coefficients 1500 - =
of the R-K series, all =
. 1800 - —
with the same value,
10000 J/mol. =60 - B
0 - N
_5@@_ |_1 L
-18080 T T T T
A %] B.2 8.4 B.6 0.8 1.0
X(B)
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2.4 Excess Gibbs energy

Example: Effect of Excess term on the phase
diagram
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2.4 Excess Gibbs energy
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2.5 Dilute solutions

Raoult’s law

Let us consider a particular o solution that behaves as a
regular solution and has a negative regular solution
parameter. For high B content a8z —X; and we get

Us="Gg +RT Inxg +0

a __ yafoa  yar0 o
a; = Xg fg = Xge" =xg

Raoult’s law

ACTIVITY B

MOLE FRACTIONB

FIG. 2.5
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2.5 Dilute solutions

Henry’s law

For low B content we get Xg >0 X3 —>1
1, —"G¢ =RT Inag =RT Inx$ +°G¢ l
=RTInx? +RTInf¥ =RT InxZ + L(x5)*=RT Inx{ +L
FIG. 2.5 At x7 =1
ol 1,—°GZ =0+ L=RT Ina?
: _ a5 =exp(L/RT)
%m- - Henry’s law

oD 8« exp[FG5(x; — 0)/ RT]=exp(L/RT)

-
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2.6 Phases with sublattices

TTTTTTTTTTTTTT

°°°°°°°°°°°° When lattice sites are not equivalent they are divided in

different sublattices e.qg.

(A,B)a(C,D)y
End-members: A,C,, A,D,, B,C,, B,D,

Surface of reference
G, A
- /
y AD
¥ / BD
AC y—B’ BC
FIG. 2.6
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2.6 Phases with sublattices

OOOOOOOOOOOO

Site fractions, y;, are used to express the Gibbs energy
for one mole of formula units

G, =22VY;°G,, +aRTZy;Iny, +bRT Xy, Iny,
they are related to the mole fractions as

~ Ng  (a/b)N. (a/b)x.
N +Ng N, +N, X, +X,

Ve
with the (A,B)_(C,D), model as example

Ideal Compound Energy Model

\

since ideal mixing on each sublattice and no excess term
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2.6 Phases with sublattices
Chemical potential when stoichiometric
constraint

Chemical potential of the elements cannot be defined
for such a phase alone. Instead the chemical potential
of the end-member can be obtained, e.g.

Hac ="Gac, +YsYpA'Gac, .ep, +a@RTINY, +bRTIny,

where AOGAac:b +B,Dy, :OGAa D, "'OGBacb _OGAacb _OGBan
and is called the standard Gibbs energy of reaction

of the reciprocal reaction AC, +B,D, > AD, +B,C,

One can show that p,c +HUgp = HUap T Hpc,

(Obvious!)
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2.6 Phases with sublattices
Stoichiometric constraint

Reciprocal system and due to Gibbs-Duhem it behaves
like a ternary!

Only three of the chemical potentials
of the four elements are independent
In a reciprocal system

Al = Hpp, — 78

-
‘f’ ~
-

aluB ::uBan _b,uD T T T T T

bue = Hpac, — Hap, +bug FIG. 2.4

where yuy Is regarded as reference (e.g. oxygen)

Computerized Thermodynamics for Materials Scientists and Engineers
Hillert and Selleby, 2018



2.6 Phases with sublattices

Stoichiometric constraint

If we instead have e.g. (A,B),(A,C,D),

l.e.
If (at least) one element can dissolve in all sublattices

then the chemical potentials of all elements may be
evaluated since y,., Is equal to the chemical potential
of A with°G,, as reference, related to G} if

°G,, — (@+b)GY' is known.
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2.7 Interstitial solutions

Let us regard D as Va and C as interstitials:
(A,B),(C,D), i.e. (A,B),(C,Va),

The end-members A,D, and B D, would then be pure
A and B!

Example: bcc (Fe,Cr),(C,Va); where Fe,;Va; and Cr,Va,
would be pure bcc-Fe and bcc-Cr respectively
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2.8 The ideal gas model

For a monatomic species the ideal gas model predicts:

1, =K, +RT InP,

P, is regarded as the partial pressure of species J but is
actually defined as y,P where Y; is the fraction of J
relative all other species in the gas and P is the total
pressure. We may write:

1, =K, +RTINP+RT Iny,
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2.8 The ideal gas model

K, +RTInP depends strongly on pressure compared
to °G,; for a condensed phase. For a gas species one
usually defines the pure species at a P of 1 bar as the
reference at the current T I.e. the standard state.

w1, ="G, (dbar,T)+RT In P,

the partial pressure must then be expressed In
bar. We usually omit 1 bar, T and write

11,=°G, +RT InP,

and ° for a gas then means that the species is in pure
gaseous form at 1 bar and the current T.
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2.8 The i1deal gas model

For a diatomic gas species we get: yJZ:"GJ2 +RT In P,
at equilibrium we have

My, = 21
and we can evaluate u; =0.5(°G, +RTInP, )

and also the equilibrium value of P, from P,

P? =P, exp[(°G, -2°G,)/RT]
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2.8 The ideal gas model

For the gaseous elements, H, N and O, the diatomic
species iIs much more abundant than the monatomic
species, I1.e. H,, N, and O,, and in those cases these
species are used as reference, i.e. 0.5°G, is used as
reference for species J.

In such cases P,, Is the partial pressure in an
Imagined atmosphere where J and J, are in
equilibrium.
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2.8 The ideal gas model

Example — gas in database

GAS
CONSTITUENTS: 0,02,03

G(GAS,0:0)-H298(1/2_MOLE_02(GAS),0;0) =
+F13634T+R*T*LN(1E-05*P)

G(GAS,02:;0)- 2 H298(1/2_MOLE_02(GAS),0;0)
+F14003T+R*T*LN(1E-05*P)

G(GAS,03:;0)- 3 H298(1/2_MOLE_02(GAS),0;0)
+F14300T+R*T*LN(1E-05*P) \

P=1bar = 1E5 Pa =
LN(1E-O5*P) =0

26 Computerized Thermodynamics for Materials Scientists and Engineers
Hillert and Selleby, 2018



2.8 The ideal gas model

ROYAL INSTITUTE
OF TECHNOLOGY

Example — gas in database

SYMBOL STATUS  VALUE/FUNCTION
4 F14003T 20000000
208.15<T< 900.00:
~6960.69252-51.1831473*T-22.25862*T*LN(T)-.01023867*T**2+1 .339947E-06*T**3
~76749 .55*T**(-1)
900.00<T< 3700.00:
~13136.0172+24.743296*T-33_55726*T*LN(T)-.0012348985*T**2+1 .66943333E-08*T
**3+539886*T**(-1)
3700.00<T< 9600.00:
+14154 _6461-51 .4854586*T-24_47978*T*LN(T)-.002634759*T**2+6 .01544333E-08*T
**3-15120935*T**(-1)
9600.00<T<18500.00-"
~314316.628+515.068037*T-87 .56143*T*LN(T)+.0025787245*T**2-1 .878765E-08*T*
*3+2 .9052515E+08*T**(-1)
18500.00<T<20000.00:
~108797.175+288.483019*T-63.737*T*LN(T)+.0014375*T**2-9E-09*T**3+_25153895
*T**(— 1)
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2.9 Vapour pressure

Even solid elements may have a vapour pressure,
usually very small. The standard state for the gas
would be based on the solid state at 1 bar and the

current T.
The chemical potential of the monatomic species in

the gas would be
ty ="GJ* +RTInP, £Gy" =G, +A, °Gy* +RT InP,

PM = eXp[(,uM _Glf/fd —Af OGISIaS)/ RT]
where A °G¥*="G¥ -G

and similarly
Py, =exp|(sy, —2Gi¢ — A °GE)/RT |
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2.10 Thermal vacancies

Thermal vacancies are the empty sites in a solid metal.
They are called "thermal” since they increase with T.

(AVa),

The system is unary and the amount of Va is thus an
Internal variable

\?g = exp[_ (OGVa T I—AVa yi)/ RT]; eXp[— EAVa / RT]

Since the number of Va is so small we cannot
distinguish experimentally between the two terms
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2.11 Solutions with associates

One type of non-ideal solutions uses associates e.g.
molecules to describe the excess term.

For A-B solutions with AB associates (in addition to
A and B) we get per mole of constituents,

G (Y11 Y2) = Ya Ga+Ys Gg + Yas Gus + RTZy; Iny,
which may be regarded as an ideal solution model for a

solution with associates.

We use here site fractions or more correct constituent
fraction even though there is only one sublattice
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2.11 Solutions with associates

wrer - Associate Model - Example Cd-Te

We have Cd, Te and also CdTe species (compare to
a gas phase with molectile<)

]
\\\\
AY
X yCd + yCdTe Sasf A
Cd E )
Yea T ¥re t 2yCdTe 2 1
o™-30F
£
X
]
X, — yTe + yCdTe .45
" Yoy + Ve +2 2
Yed T Yre T4 Yeare 5
Ly ~60
75 3 : 1 ' :
0.0 02 0.4 06 0.8 10
Mole fraction of Te
Fig. 4. Molar integral enthalpy of formation of the Cd-Te alloys referring
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2.11 Solutions with associates

We treat the y;:s as X;:s which is allowed for frozen-in
states or at internal equilibrium:

oG oG

=2y, —="G, +RTIny;
0y | oy,
At internal equilibrium using g,z = t, + Ug

and the above egn. we get
="G,s +RTINY:L="G, + RTIny'+°G, + RT In y;!
eq

and — " = eXp(—AOGAB /RT): K

eq,,e
AJB

where A°G ;=G ,,—"G,—"G,

:uj :Gm+

An example of the law of mass action and K is a temperature
dependent coefficient, often called equilibrium constant
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2.11 Solutions with associates

ROYAL INSTITUTE
OF TECHNOLOGY

Excess Gibbs energy due to associates

Excess Gibbs energy kJ/mol
do
|

Ay OGAB =
-7 1 1 1

J
ﬁ 0O 02 04 06 08 10

MOLE_FRACTION B

“G,, =G, (associate model) -G, (ideal solution model)
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