高等光学仿真(MATLAB)——光波导,激光(第3版)

 软件图书  图书/计算机与互联网/计算机控制与仿真
产品特色

编辑推荐

经典畅销书的新升级版,基于MATLAB2016a版本。书中代码和数据可以通过论坛、出版社网站免费下载。


内容简介

本书介绍如何利用MATLAB来仿真高等光学中举足轻重的两个研究方向——光波导和激光中的一系列理论模型。读者通过这些仿真过程和结果能够进一步加深对光波导和激光的理解和应用。

全书共7章,分别介绍光的电磁理论基础,光的干涉和衍射,理想平板介质光波导中的光传播特性及仿真,光纤中的光传播特性及仿真,高斯光束和光纤耦合,激光原理及仿真,高功率双包层光纤激光器及仿真。书中大量运用到求解各类模型的数值计算方法,包括方程求根的数值解法、数值积分方法、常微分方程的初值问题数值求解、常微分方程的边值问题数值求解等。采用MATLAB 中相应的数值求解函数仿真高等光学模型,并结合MATLAB 强大的作图功能实现仿真结果的可视化,可加深读者对高等光学问题仿真结果及其物理意义的理解,达到举一反三的效果。本次修订增加了光的干涉和衍射仿真,结合MATLAB的数字图像功能来展示各种光的干涉和衍射的图样。

本书可作为高等院校光学、光学工程、光信息科学技术、电子科学技术等有关专业本科生和研究生的教材,也可供相应专业的教师和科技工作者参考。


作者简介

欧攀,中国科学技术大学精密机械与精密仪器系学士,清华大学精仪系光学工程博士,北京航空航天大学副教授,教育部“新世纪优秀人才支持计划”入选者,长期从事激光技术、光纤传感、3D技术等方面的研究。获国防技术发明二等奖1项(排名1),国防科学技术进步三等奖2项。


目录

第1 章光的电磁理论基础 1

1.1 麦克斯韦电磁理论 1

1.1.1 麦克斯韦方程组 1

1.1.2 边界条件3

1.1.3 时谐电磁场4

1.1.4 电磁场的波动方程 5

1.2 平面波和叠加原理 5

1.2.1 平面波 5

1.2.2 叠加原理 6

1.3 微分算子7

1.3.1 时间微分算子7

1.3.2 空间微分算子7

1.4 平面光波在电介质表面的反射和折射8

1.4.1 电矢量平行入射面 8

1.4.2 电矢量垂直入射面 10

1.4.3 菲涅耳公式11

1.4.4 反射率和透射率 12

1.5 光波由光疏介质进入光密介质 14

1.5.1 反射率、透射率变化 14

1.5.2 布鲁斯特角 17

1.5.3 相位变化 18

1.6 光波由光密介质进入光疏介质 18

1.6.1 反射率、透射率变化 18

1.6.2 全反射 20

1.6.3 相位变化 21

1.6.4 倏逝波 22

1.7 MATLAB 预备技能与技巧 24

1.7.1 向量及其操作 24

1.7.2 MATLAB 基本作图 30

1.8 习题 39

第2 章光的干涉和衍射 40

2.1 光的干涉原理 40

2.1.1 干涉的条件 41

2.1.2 双光束干涉 42

2.2 波前分割干涉 44

2.2.1 杨氏双缝干涉 44

2.3 波幅分割干涉 46

2.3.1 等倾干涉 46

2.3.2 等厚干涉 48

2.3.3 激光干涉引力波天文台(LIGO) 50

2.4 多光束干涉 50

2.4.1 平行平面板的多光束干涉 51

2.4.2 法布里–珀罗干涉仪 53

2.5 光的衍射原理 57

2.5.1 单缝衍射 58

2.5.2 双缝衍射 60

2.5.3 衍射光栅 62

2.5.4 圆孔衍射和艾里斑 62

2.6 菲涅耳衍射 67

2.6.1 菲涅耳衍射积分式 68

2.6.2 几种典型的菲涅耳衍射 69

2.7 白光干涉与衍射 71

2.8 衍射的傅里叶光学仿真 75

2.9 MATLAB预备技能与技巧 78

2.9.1 MATLAB中的数字图像 78

2.9.2 MATLAB中数字图像的读取、显示及输出 80

2.10 习题 88

第3 章理想平板介质光波导中的光传播特性及仿真 89

3.1 平板介质光波导一般概念 89

3.2 平板光波导分析的射线法 90

3.2.1 振幅反射率和附加相移 91

3.2.2 特征方程 91

3.3 平板光波导中的TE模 93

3.3.1 TE模的电磁理论求解 93

3.3.2 TE模的特征方程和截止条件 95

3.3.3 TE模特征方程的MATLAB图解 96

3.3.4 TE模特征方程的MATLAB数值求解 99

3.3.5 非对称平板光波导和对称平板光波导 100

3.3.6 TE模的截止波长 102

3.3.7 TE模场分布的MATLAB图示 103

3.3.8 TE模的模式数 105

3.3.9 TE模的传播功率 105

3.3.10 TE模的模式特性 106

3.3.11 TE模的归一化传播常数 106

3.4 平板光波导中的TM模 108

3.4.1 TM模的电磁理论求解 108

3.4.2 TM模的特征方程 109

3.4.3 TM模的截止波长 110

3.4.4 TM模的传播功率 111

3.5 MATLAB预备技能与技巧 111

3.5.1 MATLAB的脚本和函数 111

3.5.2 函数的函数 112

3.5.3 方程求根的MATLAB数值解法 114

3.5.4 方程求根的MATLAB符号解法 120

3.6 习题 127

第4 章光纤中的光传播特性及仿真 128

4.1 光纤的诞生和光纤通信 128

4.2 光纤的一般概念 129

4.2.1 光纤和光缆 129

4.2.2 光纤的种类 130

4.2.3 光纤的制造 131

4.2.4 光纤的损耗 132

4.2.5 光纤传输的优点 132

4.3 光纤的参数定义 134

4.3.1 基本特性参数 134

4.3.2 归一化频率 134

4.3.3 归一化横向相位参数和归一化横向衰减参数 135

4.3.4 有效折射率 135

4.3.5 归一化相位常数 136

4.3.6 截止波长 136

4.4 光纤波导的电磁理论解法 137

4.4.1 柱坐标系亥姆霍兹方程和Bessel函数 137

4.4.2 光纤中的电磁场分量矢量解 140

4.4.3 矢量解的特征方程 142

4.4.4 导波模的分类和特征方程 143

4.5 光纤中的线性偏振模式LPlm 144

4.5.1 LP模的简并及其特征方程 144

4.5.2 LP模的截止条件 146

4.5.3 LP模归一化截止频率的数值求解 147

4.6 阶跃型折射率光纤中的模式容量和光功率分布 150

4.6.1 阶跃型折射率光纤中LP模的模式容量 150

4.6.2 阶跃型折射率光纤中LP模的光功率 151

4.7 单模光纤特性分析 153

4.7.1 单模光纤的特征方程及其MATLAB数值求解 153

4.7.2 单模光纤的一维模场分布 157

4.7.3 单模光纤的二维模场分布 159

4.7.4 单模光纤的三维模场分布及动画演示 163

4.7.5 单模光纤的归一化相位常数 166

4.7.6 单模光纤的光功率填充因子 168

4.7.7 单模光纤的模场直径(模场半径) 170

4.7.8 光纤中模场的高斯模型近似 173

4.8 多模光纤特性分析 175

4.8.1 多模光纤的特征方程及其MATLAB数值求解 175

4.8.2 多模光纤模式的二维光场分布 178

4.8.3 多模光纤模式的三维光场分布及动画演示 181

4.9 MATLAB预备技能与技巧 185

4.9.1 Bessel函数及其特性 185

4.9.2 MATLAB的三维曲线作图 189

4.9.3 MATLAB的三维曲面作图 192

4.9.4 MATLAB的动画制作 200

4.10 习题 205

第5 章高斯光束和光纤耦合 206

5.1 高斯光束及其传播 206

5.1.1 高斯光束的基本性质 206

5.1.2 高斯光束的复参数表示和ABCD定律 211

5.1.3 高斯光束通过复杂光学系统的变换 217

5.1.4 高斯光束通过薄透镜的变换 219

5.1.5 高斯光束的聚焦 222

5.2 光纤端面的辐射场 225

5.2.1 夫琅禾费区域的辐射场 225

5.2.2 高斯孔径光束的辐射场 229

5.2.3 试验确定参数ka及V的值 232

5.3 光纤的光功率发射和耦合 234

5.3.1 光源的输出方向图 234

5.3.2 光源耦合进多模光纤的光功率计算 236

5.3.3 LED与单模光纤的光功率耦合 238

5.4 光纤与光纤的连接及其光功率损耗 241

5.4.1 多模光纤连接的光功率损耗 241

5.4.2 单模光纤连接的光功率损耗 250

5.5 MATLAB预备技能与技巧 253

5.5.1 数值积分和符号积分的基本概念 253

5.5.2 积分的MATLAB符号计算 253

5.5.3 积分的MATLAB数值计算 256

5.6 习题 261

第6 章激光原理及仿真 263

6.1 激光发展简介 263

6.2 辐射与物质的相互作用 264

6.2.1 吸收、反射、透过率及系数 264

6.2.2 热辐射现象 265

6.2.3 黑体辐射的规律 266

6.2.4 普朗克公式和能量量子化假设 267

6.2.5 玻耳兹曼分布 270

6.3 自发辐射、受激辐射和受激吸收 271

6.3.1 自发辐射 272

6.3.2 受激辐射 273

6.3.3 受激吸收 274

6.3.4 爱因斯坦关系式 274

6.4 吸收与光学增益 275

6.4.1 原子线形 275

6.4.2 受激吸收 278

6.5 激光器的基本构成和激光的模式 280

6.5.1 激光器的基本构成 280

6.5.2 激光的模式 281

6.6 激光速率方程 283

6.6.1 三能级系统的速率方程 284

6.6.2 四能级系统的速率方程 286

6.7 激光调Q 技术 287

6.7.1 激光调Q 原理 288

6.7.2 声光调Q 289

6.7.3 被动调Q 290

6.8 激光二极管抽运的被动调Q 微晶片激光器仿真 292

6.8.1 被动调Q 耦合速率方程组 292

6.8.2 被动调Q 耦合速率方程组数值仿真 293

6.9 MATLAB预备技能与技巧 298

6.9.1 微分方程的概念 298

6.9.2 常微分方程的数值解法(初值问题) 299

6.9.3 欧拉法 300

6.9.4 龙格–库塔法 302

6.9.5 MATLAB中的常微分方程初值问题求解 305

6.9.6 MATLAB中的ode求解函数 311

6.9.7 高阶常微分方程(组)的MATLAB数值求解 316

6.10 习题 318

第7 章高功率双包层光纤激光器及仿真 319

7.1 双包层光纤激光器概述 320

7.1.1 光纤激光器发展历史 320

7.1.2 双包层光纤的结构 322

7.1.3 双包层光纤激光器和其他激光器比较 323

7.2 端面抽运的掺Yb双包层光纤激光器的基本理论及仿真 325

7.2.1 端面抽运方式 325

7.2.2 Yb离子的能级结构和光谱特性 326

7.2.3 速率方程和公式推导 328

7.2.4 端面抽运高功率双包层光纤激光器的数值仿真 331

7.3 侧面抽运的双包层光纤激光器及其仿真 336

7.3.1 侧面抽运的耦合方式 336

7.3.2 多点侧面抽运的光纤激光器理论模型 341

7.3.3 多点侧面抽运高功率双包层光纤激光器的数值仿真 345

7.4 MATLAB预备技能与技巧 348

7.4.1 常微分方程的边值问题概述 348

7.4.2 边值问题数值解法 350

7.4.3 利用MATLAB求解边值问题示例 352

7.5 习题 362

MATLAB 函数名与关键词索引 364

术语索引 368

参考文献 372